coagulation

Laminar Tube Flocculator, Fall 2010

Tami Chung, Alexander O’Connell, Karen Swetland

Abstract

The Fall 2010 Tube Floc Team of aimed to better understand the development of rapid flocculation through a series of experiments and data analysis. In previous semesters, we had focused on the variation of flocculator length and alum dose. With the completion of these studies, we encountered more questions regarding the fundamental mechanisms involved in the process. As a result we chose to focus on characterizing the minimum coagulant dose needed to initiate rapid flocculation for two difference coagulants, alum and PAC. We hope to use this data in the future to develop a theoretical framework describing the onset of rapid flocculation. In order to accomplish this goal and to ensure the accuracy of our data we made a number of improvements and modifications to the FReTA apparatus this semester. We are currently in the process of collecting data and hope to complete our planned experiments by the end of the Fall 2010 semester.

Stock Tank Mixing, Spring 2012

Julie Silva

Abstract:

The Stock Tank Mixing team is required to improve the mixing process for the coagulant and disinfectant in the stock tank. Previous teams have developed the centrifugal pump design, which can mix the following chemicals: aluminum sulfate (alum), polyaluminum chloride (PACl) and calcium hypochlorite (Ca(ClO)3). This team decided to focus on the use of polyaluminum chloride. Due to its chemical properties, it is most likely the future coagulant of most AguaClara plants. The stock tank mixing team plans to design a mixing system that will improve operator ease in use of the mixer, achieve a truly homogeneous mixer, and be scalable to larger plants. The team will also create operator guidelines, and provide the operator with a verification of homogeneity.

2012 stock tank.PNG

Chemical Dose Controller - Spring 2015

Annie Cashon, Christine Leu, Auggie Longo

Abstract:

The Chemical Dose Controller is a device that maintains a constant chemical dose as the plant flow rate changes. After working alongside the foam filtration team in El Carpintero, Honduras this past January, the CDC team has changed the lab set-up to be more reflective of the systems in the field. Specifically, the major head loss element was changed to be vertically-oriented instead of horizontal to decrease the footprint of the CDC system. During the Spring 2015 semester, the CDC team will run a variety of experiments with the new system including head loss testing, determining flow breakpoints, and testing units at stock concentrations. In addition to testing the system through a variety of experiments, several design changes will be looked into this semester. This included tasks such as making the constant head tank from locally available items in Honduras, as well as making the constant head tank chlorine resistant. Finally, the team is compiling a system of equations to convert the CDC system into a modular, packaging item for future shipment. With design changes in mine, a major goal of the CDC team this semester will be to create an assembly manual and parts-list.

2015cdc.PNG

Laminar Tube Flocculator - Spring 2015

Luyan Sun, Tanvi Naidu, Kevin Shao

Abstract:

Research on the Laminar Tube Flocculator in Spring 2015 aimed to validate the results obtained by Karen Swetland with the FReTA system and to further investigate factors that affect the overall turbidity removal. The past semester’s team worked to test the new residual turbidity monitoring system, SWaT, in comparison to the FReTA system and to verify that the new system can obtain similar results to those obtained with the old system. However, the actual coagulant tubing size used in the previous SWaT experiment was different from that in the pump control method file. Because of the incorrect input in tubing size, the PACl dosages were not accurate. The Spring 2015 research derived correction factors that would make the previous date usable. Then experiments were conducted in the SWaT system to finish verifying Karen Swetland’s results. Future works includes experiments to determine if there is an optimal floc size which is small enough to combine with small clay particles yet large enough to be separated in the sedimentation tank. Also, future teams should study how dissolved organic matter (DOM) affects the performance of the flocculator and sedimentation tank. These findings will improve the performance of the flocculator and make it more effective for use in water supply.

2015laminartubefloc.PNG

Unit Process Analysis: Coagulant - Fall 2019

Ada Lian, Sarah Paquin

Abstract:

The Fall 2019 Unit Processes Analysis Coagulant (UPAC) team’s objective is to reduce capital and operating costs and improve particle removal efficiency for the AguaClara water treatment process, specifically by analyzing the response of the system to varying coagulant dosage. To analyze the system response, we will run a series of trials on a treatment plant sedimentation model, varying the coagulant dosage and recording observations regarding the effluent turbidity, floc formation, and floc blanket formation. Through this experiment, the team will be able to establish a minimum coagulant dosage, which could lower operating costs, and to learn valuable information about the interactions between coagulant and the primary particles of the influent water at high coagulant dosages.

2019coagulant.PNG

Contact Chamber - Fall 2017

Cheer Tsang, Yeonjin Yun, Ben Gassaway

Abstract:

The introduction of coagulant into turbid water causes collisions of suspended particles with coagulant nanoparticles, which promotes the growth of flocs. However, a large portion of the coagulant dose adheres to pipe walls rather than influent particles, requiring a higher than necessary coagulant dose to account for this effect. In order to minimize coagulant waste, an apparatus called the contact chamber was fabricated to increase collisions between influent particles and coagulant. The Fall 2017 Contact Chamber team analyzed the performance of the contact chamber by comparing influent and effluent turbidity in experiments with and without a contact chamber. After several trials, it was concluded that the contact chamber did not improve the effluent turbidity. In fact, the effluent turbidity with the contact chamber was significantly greater than the effluent turbidity without the contact chamber.

contactchamber2017.PNG

High G Flocculation - Fall 2017

Roswell Lo, Tanvi Naidu, Luna Oiwa

Abstract:

The High G Flocculation team this semester designed an experimental set-up to test the effects of velocity gradient (G) in a flocculator and to determine the optimal G value based on flocculator performance in terms of effluent turbidity. The G value was varied in different trials by varying flocculator flow rate while controlling for coagulant dosage, influent turbidity, flocculation tube length, and upflow velocity through the sedimentation tank. G_theta was kept constant as around 20,000. The constant sedimentation tank upflow velocity was achieved using a waste stream between the flocculator outlet and sedimentation tank. It was found that for a standard coagulant dose, lower G values were associated with lower effluent turbidity, with 100 Hz being the lowest value tested. The same general relationship was observed for a higher coagulant dose, except that the lowest G values resulted in higher effluent turbidity due to floc blanket collapse. Data from this study will be used in the future to inform the geometry of the flocculator, i.e. the optimal distance between baffles in a full-scale water treatment plant.

highGfloc2017.PNG

Humic Acid, Floc/Sed Model - Fall 2019

Lawrence Li, Maya Shanti, Carolyn Wang

Abstract:

The Fall 2019 Humic acid subteam seeks explore the relationship between optimal coagulant dosages and effluent absorbance. Past teams have tested optimal concentration for removing HA. Based on previous work, the optimal coagulant concentration appears naround 1.5 mg/L. For this semester, the team plans to test more coagulant concentrations and humic acid concentration and find the optimal dosage to lower the absorbance of the effluence. The AccuView spectrophotometer will be used to measure the effluent absorbance and measure the efficiency of removing color. The concentrations of HA and coagulant is set based on the data collected from water plants.

aguaclara.png