2009

Computational Fluid Dynamics Flocculation Tank Simulation, Fall 2009

Abstract:

Computational Fluid Dynamics (CFD) is a tool used by AguaClara to obtain a description of the flow through a portion of the plant where particle formation and growth (flocculation) occurs. This part of the plant is referred to as the flocculator. In this section, dirty (turbid) water flows through a series of baffles that enhances turbulent mixing. Essentially, for particles (flocs) to grow and eventually settle out in the sedimentation tank, they first must collide. By increasing the level of turbulence, the flocculator is increasing the collision potential of flocs. However, if there is too much turbulence, the flocs will break up and not settle out. By running CFD simulations of the flocculator, AguaClara can analyze the parameters important to flocculation and use the resulting data when making design decisions.

Computational Fluid Dynamics Flocculation Tank 3D Simulation, Spring 2009

Abstract:

The flocculation tank simulation team works on building a stable and reliable numerical model to simulate the flow inside the hydraulic flocculation tank, and providing well-studied guidelines for design, construction and operation of the flocculation tank.

Gravity powered hydraulic flocculators are used by AguaClara small-scale water treatment plants due to their low cost, inherent simplicity and robust operation. However, their inflexibility of energy input into the water relative to mechanical flocculators requires well studied design based on the understanding of the flow field and relevant performance parameters.

An appropriate CFD simulation can provide detailed numerical solutions for all the variables in the flow field, and by varying parameters such as tank geometry and flow conditions, we could obtain predictions of each of the flow variables and thus optimize the design towards lower cost and better performance.

Currently, our effort is focused on depicting an accurate energy dissipation map inside the flocculator, describing the size and the shape of the region where most of the energy is dissipated and the formation and collisions of flocs happen, thus providing basis for more efficient and economical design utilizing geometries that dissipate energy as uniformly as possible.

Chemical Dose Controller Retrofit Designs, Fall 2009

Abstract:

In some AguaClara plants, a surface foam develops at the end of rapid mix. The initial focus of the research was on the chemical conditions required for this surface foam to develop then the focus shifted to the fluid mechanics that make this occurrence possible and the simple retrofit designs that can ameliorate these conditions. In the initial experiments, different chemical conditions were tested for using a series of jar mixers and one-gallon tanks that modeled rapid mix. The first few trials tests ran a constant supply of clay with varying amounts of alum but these did not exhibit any form of surface foam formation. Subsequent trials included organic matter: humic acid, but these only produced large non persistent bubbles. It was not until a stronger surfactant, liquid soap, was added to the baffle spacing that a surface foam with strong persistent bubbles developed. From these experiments it was concluded that air entrainment along with a surfactant in the raw water are the main chemical factors behind surface foam formation.

Upon observing that waterfalls, like the one found in the LFOM, created the ideal fluid dynamic conditions for air entrainment; the second half of the research focused on retrofitting the LFOM at current AguaClara plants. The four designs that were suggested either used a submerged orifice, a vertical surface area or an inclined plane to decrease the velocity of the incoming water through the LFOM. In testing the viability of each design option the three limiting parameters of foam formation from water jets were recognized and documented.

Chemical Dose Controller Surface Foam, Summer 2009

Abstract:

In some AguaClara plants, a surface foam develops at the end of rapid mix. The initial focus of the research was on the chemical conditions required for this surface foam to develop then the focus shifted to the fluid mechanics that make this occurrence possible and the simple retrofit designs that can ameliorate these conditions. In the initial experiments, different chemical conditions were tested for using a series of jar mixers and one-gallon tanks that modeled rapid mix. The first few trials tests ran a constant supply of clay with varying amounts of alum but these did not exhibit any form of surface foam formation. Subsequent trials included organic matter: humic acid, but these only produced large non persistent bubbles. It was not until a stronger surfactant, liquid soap, was added to the baffle spacing that a surface foam with strong persistent bubbles developed. From these experiments it was concluded that air entrainment along with a surfactant in the raw water are the main chemical factors behind surface foam formation.

Upon observing that waterfalls, like the one found in the LFOM, created the ideal fluid dynamic conditions for air entrainment; the second half of the research focused on retrofitting the LFOM at current AguaClara plants. The four designs that were suggested either used a submerged orifice, a vertical surface area or an inclined plane to decrease the velocity of the incoming water through the LFOM. In testing the viability of each design option the three limiting parameters of foam formation from water jets were recognized and documented.